EdSIDH: Supersingular Isogeny Diffie-Hellman on Edwards Curves

Abstract

Problems relating to the computation of isogenies between elliptic curves defined over finite fields have been studied for a long time. Isogenies on supersingular elliptic curves are a candidate for quantum-safe key exchange protocols because the best known classical and quantum algorithms for solving well-formed instances of the isogeny problem are exponential. We propose an implementation of supersingular isogeny Diffie-Hellman (SIDH) key exchange for complete Edwards curves. Our work is motivated by the use of Edwards curves to speed up many cryptographic protocols and improve security. Our work does not actually provide a faster implementation of SIDH, but the use of complete Edwards curves and their complete addition formulae provides security benefits against side-channel attacks. We provide run time complexity analysis and operation counts for the proposed key exchange based on Edwards curves along with comparisons to the Montgomery form.

Publication
Security, Privacy, and Applied Cryptography Engineering - 8th International Conference, SPACE 2018, Kanpur, India, December 15-19, 2018, Proceedings
Date
Links